Normalne podgrupe. Faktorske grupe.

Definicija (normalna podyrupa)
Podprupa H grupe G nazivamo normalna podyrupa grupe G ako je $a H=H a$ za sve $a \in G$. Ovo ozna čavamo sa $H \triangleleft G$.
(\#) Neka je G Abelova grupa. Pokazati da, e sraka podgrupa H grupe G normalua podgrupa.
R_{j}
Neka e h proizvofan element podyrape H.
Primjetimo du za $\operatorname{tg} \in G \quad$ rrijedi $g h=h g$
Druyim rjecima $\quad g H=H g \quad H \quad \forall g \in G \Rightarrow G$.

$$
\left(g H=\{g h \mid h \in H\}=\{h g \mid h \in H\}=H_{g}\right)
$$

\#
(a) Neka, e $H=\{(1),(12)\}$. Da li je H normalua podymps grope S_{3} ?
(b) Neku je $N=\{(1),(123),(132)\}$. Da lije $N \triangleleft S_{3}$?
k_{j}
(a) Primpetimo du je (123) $H=\{(123),(13)\}$

$$
H(123)=\{(123),(23)\}
$$

$\Rightarrow H$ nije normalna podyrupa grepe S_{3}.
(b)

$$
\begin{aligned}
& N=\{(1),(123),(132)\} \\
& (12) N=N(12)=\{(12),(13),(23)\}
\end{aligned}
$$

N je normalna podynipa grape S_{3}.

Teorema (test ${ }^{z a}$ normalue podyrupe)
Podgrupa H grupe G je normulua u grupi G ako i samo ako $x H x^{-1} \subseteq H$ za sue $x \in G$.
dokaz:
Pretportavimo da je H normalna u yrupi G. Ta da za bilo koji $x \in G ; h \in H$ partoji h' $\in H$ takar da

$$
\begin{aligned}
x h & =h^{\prime} x \\
\Rightarrow x h x^{-1}=h^{\prime} & \Rightarrow x H x^{-1} \subseteq H
\end{aligned}
$$

Obrnutto, pretpostavimo du je $x H_{x^{-1}} \subseteq H$ za sue $x \in G$.

$$
x=a \Rightarrow a H a^{-1} \subseteq H \Rightarrow a H \subseteq H a . \ldots(1)
$$

S druge strane

$$
\begin{aligned}
x & =a^{-1} \Rightarrow a^{-1} H\left(a^{-1}\right)^{-1} \subseteq H \Rightarrow a^{-1} H a \subseteq H \Rightarrow \\
& \Rightarrow H_{a} \subseteq a H \quad \ldots(2)
\end{aligned}
$$

(1) ; (2) $\Rightarrow \quad a H=H_{a}$
(\#) Neka e $H=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R} ; a c \neq 0\right\}$. Du lije $H \triangleleft G L_{2}(\mathbb{R})$? Obrazlo żiti svoju turduju.
R_{j}
Pokazademo da H nije normalna podyrupa grupe $G L_{2}(\mathbb{R})$. Druyim rjecima prodratidicieno matrice $A \in G L_{2}(\mathbb{R})$; $B \in H$ takue da $A B A^{-1} \notin H$.

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad A \cdot A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \Rightarrow \quad A=A^{-1} 1 . \quad A \in G L_{2}(\mathbb{R})
$$

Neka, e $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Primjetimo da $B \in H$.

$$
A B A^{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

Primpetimo da $A B A^{-1} \notin H$.
H ne zadovoljara uslove prethodue teoreme (lest za normalue podynupe) pa H nije normalua podynupa grape G.
(\#) Pokazati da, e An normalna podyrupa grupe S_{n}.
R_{j} I naīin

$$
\left|S_{n}\right|=n!\quad\left|A_{n}\right|=\frac{n!}{2}
$$

\#(lijevih klasa od A_{n} a $\left.S_{n}\right)=\left[S_{n}: A_{n}\right]=\frac{\left|S_{n}\right|}{\left|A_{n}\right|}=\frac{n!}{\frac{n!}{2}}=2$
\# (desuih klasa od A_{n} u $\left.S_{n}\right)=$ \# (lijevih klasa od $\left.A_{n} u S_{n}\right)=2$
Z̈elino pokazati da je $a A_{n}=A_{n} a$ za $\forall a \in S_{n}$.

- Ako je $a \in A_{n}$ tada $a A_{n}=A_{n}=A_{n} a$
- Ako $a \notin A_{n} \quad$ tada $a A_{n} \neq A_{n} \neq A_{n} a$
$S_{n}=A_{n} U_{a} A_{n}$ disjunktrua unijer duije razlicite lijue klase
$S_{n}=A_{n} \cup A_{n} a \quad d i j u n k t n_{n}$ unija drije razlivite desue hase $A_{n} \cup a A_{n}=A_{n} \cup A_{n} a \xrightarrow{d_{i j t u n t h e m i j z ~}^{m}} a A_{n}=A_{n} a \quad \forall a \notin A_{n}$

An je normalua podgrupa grupe $S_{n} s$ obzirom de je $a A_{n}=A_{n} a$ zu sre $a \in S_{n}$

II nacin
$A_{n}=\{$ parne permulacije na n elemenata $\}$
Pokazimo da $\sigma A_{n} \sigma^{-1} \subseteq A_{n}$
$\alpha \in A_{n} \Rightarrow \alpha$ parna permataciag (prenne definicije od A_{n})
$\Rightarrow \sigma \alpha \sigma^{-1}$ je parna permutacija za se $\sigma \in S_{n}$

$$
\Rightarrow \sigma \alpha \sigma^{-1} \in A_{n} \Rightarrow \sigma A_{n} \sigma^{-1} \subseteq A_{n}
$$

Prena prethoduo, Teoremu An je normalua podgrepa grape S_{n}.
(\#) Neka su H i I normalue podgrupe grupe G. Ato, e $H \cap J=\{e\}$ (e eidertitet) pokazati da je $x y=y x$ za sue $x \in H, y \in J$.
R_{j}
$x \in H, y \in J$ proizuolina dua elementa
Pormatrajno element $x y x^{-1} y^{-1} \in G$.
Primjetimo $x y x^{-1} \in x J_{x^{-1}} \stackrel{J \text { normalua }}{\Rightarrow} x J_{x^{-1}} \subseteq J$

$$
\begin{equation*}
\Rightarrow \quad x y x^{-1} \in J \tag{1}
\end{equation*}
$$

J podgreper $\Rightarrow y^{-1} \in J$
(1) i (2) $\Rightarrow x y x^{-1} y^{-1} \in J$

Slicuo

$$
\begin{gathered}
y x y^{-1} \in Y^{H} y^{-1} \stackrel{H \text { norm. }}{\Rightarrow} \\
x \in H \\
\Rightarrow x y x^{-1} y^{-1} \in H
\end{gathered}
$$

Time smo dobili da $x y x^{-1} y^{-1} \in J ; x y x^{-1} y^{-1} \in H \quad \begin{aligned} \text { HAJ }=\{e\}\end{aligned}$

$$
x y x^{-1} y^{-1}=e \quad \Rightarrow \quad x y x^{-1}=y \quad \Rightarrow \quad x y=y x \quad \forall x \in H \quad \forall y \in J
$$ g-ed.

(\#) Pretpostavimo da je $N \triangleleft G$ i da e $H \leqslant G$. Defin, vimo

$$
N H=\{n h: n \in N, h \in H\} .
$$

Pokazatida je $N H \leqslant G$.
Rj. Pris,ētimo se:
Teorema (test za podympu u, jeduom koraku)
Nekaje G grupa ineka, e H neprazan podskup grupe G. $A k_{0}$, $j^{-1} \in H$ za proizvolina dva $a, b \in H$ tada $\operatorname{le}^{-1} H$ podyrupa grupe G.
Urejesenju ovog zadutka d'emo koristiti ove teovence.
$N: H$ su podgnope $\Rightarrow e \in N ; e \in H \Rightarrow e e=e \in N H$.

$$
\Rightarrow N H \neq \phi
$$

Sad izaberimo proituolina a, $b \in N H$ i pokazimo da $a b^{-1} \in N H$.

$$
\left.\left.\begin{array}{rl}
a \in N H \Rightarrow \exists n_{1} \in N ; h_{1} \in H & a=n_{1} h_{1} \\
b \in N H \Rightarrow \exists n_{2} \in N ; h_{2} \in H & b=n_{2} h_{2}
\end{array}\right\} \Rightarrow a b^{-1}=n_{1} h_{1}\left(n_{2} h_{2}\right)^{-1}\right)
$$

N podgrupa, $n_{2} \in N \Rightarrow n_{2}^{-1} \in N \stackrel{N_{\text {nom. oogr. }}^{\Rightarrow}}{\Rightarrow} \underbrace{\left(h_{1} h_{2}^{-1}\right) n_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}}_{=n_{3}} \in N$

$$
\begin{equation*}
\Rightarrow\left(h_{1} h_{2}^{-1}\right) n_{2}^{-1}=n_{3}\left(h_{1} h_{2}^{-1}\right) \tag{2}
\end{equation*}
$$

Uurstimo (2) u (1):

$$
\begin{aligned}
& a b^{-1}=n_{1}\left(h_{1} h_{2}^{-1} n_{2}^{-1}\right)=\underbrace{\left(n_{1} n_{3}\right)}_{\in N} \underbrace{\left(h_{1} h_{2}^{-1}\right)}_{\in H} \text { (zato sto su } N \\
& \text { iH podyroje }
\end{aligned}
$$

(\#) Neka je G grupa i neka, e N podgropa grape G, Pokazati da e n normalna podgrepa grupe G ako; samo ako $\forall g \in G, g N_{g^{-1}}=N$.
R_{j}.
Pretpostavimo da je podgrupa N normalua u grapi $G_{\text {. }}$
U prethoduoj teoremi smo pokazali da je tada $\rho N_{\rho}-1 \subseteq N$ tg $G G$.
Pokazimo da je $N \leq g N_{g^{-1}}$.
$n \in \mathbb{N}$

$$
\begin{array}{r}
\forall g \in G \stackrel{g_{j}-1 \leq N}{\Rightarrow} g^{-1} n g=g^{-1} n\left(g^{-1}\right)^{-1} \in N \\
\Rightarrow g^{-1} n g=n^{\prime} \text { za neto } n^{\prime} \in N \\
\Rightarrow n=g n^{\prime} g^{-1} \in g N_{g}-1 \\
\text { q.e. } .
\end{array}
$$

Pretportarimo sad da, e $g N_{\rho}-1=N$ za $\forall g \in G_{\text {. }}$

$$
\begin{gathered}
\Rightarrow \forall n \in N \quad \exists n^{\prime} \in N \text { 6.d. } g^{n} g^{-1}=n^{\prime} \\
\Rightarrow g g^{n}=n^{\prime} g \Rightarrow g N \leq N g
\end{gathered}
$$

Slicuo za $N_{g} \subseteq g N$.

Teorem (Fabtorske prupe)
Neka; je G grupai nekaje H normalna podgrupa gnope G. Skup $G / H=\{a H \mid a \in G\}$ je jrupa, 4 oduasu na operaciju $(a H)(b H)=a b H$, reda $[G: H]$.
(\#) Dokazati teovemn iznad.
R_{j}
-J Pro pokazimo da je operacija dobro definisana. Tj. trebano pokazatidu, e torespodencija definisana iznad iz $G / H+G / H$ u G/H zapravo $f_{-j} a$. Da bi to dokazali, pretpostavimo du za neke elemente a, a^{\prime}, b; b^{\prime} iz G, imamo

$$
a H=a^{\prime} H ; \quad b H=b^{\prime} H
$$

i provjerimo da li, e aHbH=a'H b'H. Tj proyeriti der ee $a b H=a^{\prime} b^{\prime} H$ (time demo pokazati du definicija množeria zquisi sqmo od klasa a ne od nikhovih pledstannikal.

$$
\begin{aligned}
& a H=a^{\prime} H \quad \Rightarrow \exists h_{1} \in H \quad a=a^{\prime} h_{1} \\
& b H=b H \quad \Rightarrow \exists h_{2} \in H \quad b=b^{\prime} h_{2} \\
& a^{\prime} b H=a h_{1} b h_{2} H=a h_{1} b H=a h_{1} H b=a H b=a b H
\end{aligned}
$$

(ovdje smo konistili asocijativurst mиozlenja; ciujenicu du je $H \triangleleft G$).
Ostalo je jas: e $\mathrm{e}=\mathrm{H}=\mathrm{je}$ identitet, $a^{-1} H$ je inverz od $a H$, $(a H b H) c H=(a b) H c H=(a b) c H=a(b c) H=(a H)(b c) H=a H(b H c H)$

Red od G/H e, navamo, broj blasa od H u G.
(\#) Dokazati da je faktorska grupa ciklicke grupe ciklicka.
R_{j}
Prispetimo se:
Grupa G je ciklicka ato se moje penerisati pomoin رeduog elementa. Drupim vecima $\exists a \in G \quad G=\langle a\rangle$. Elementi faktorske prope GJH su jjere klase $\{\rho H / g \in G\}$.

Pretpostavimo da, e $G=\langle a\rangle$, Neka, $e G H$ neta fakborsku grupa (bilo koja) yriepe G. Trebames potatati. da je G/H ciklička.

Proizuljan element iz G / H, e oblika $g H$ za neki $g \in G$. Kako e G ciklicka, portoji cijeli i takar da $g=a^{i}$. $P_{a} j^{e} g^{H}=a^{i} H$.

$$
a^{i} H=\underbrace{a H \cdot a H \cdot \ldots \cdot a H}_{\text {iputa }}=(a H)^{i}
$$

Time je $\quad \mathrm{H}=(a H)^{i}$ za proizuolinu klasu φH.
Time je G/H generisan sa aH, pa, je G/H ciklicka grupa (prema definiciji ciklicke grupe).
(\#) Pokazati da je faktorska grapa Abelove grupe Abelova.
R_{j}.
Prispetivo ve: Grupa G je Abelora akko $a b=b a \quad \forall g \in G$
Neka je G abelona grupa i neka je GJH neka fuktorska grupa. Trebamo pokazati da , e G/H abelova. Izaberimo proizvolina dua elemento aH, bH grape GHH.
Tadu

$$
(a H)(b H)=(a b) H=(b a) H=(b H)(a H)
$$

Premg tome G/H, Abelora.
(\#) Neka je $H=\langle 4\rangle$ podyrupa grupe $G=Z$ genevisana brogem 4.
(a) Napisati wre elemente grupe $H=\langle 4\rangle$.
(b) Pokazati da je H normalna podyrupa grupe G.
(c) Napisati elemente fattorske grupe $G / H=\mathbb{Z} /<4>$.
(d) Napisuti Cayley-evu tabelu za $\mathbb{Z} /<4>$.
(e) Odrediti red elementa $2+\langle 4\rangle$ a grupi $\mathbb{Z} /\langle 4\rangle$.
R_{j}.
(a) Primpetimo du, e operaciju u prupi $G=\mathbb{Z}$ sabirauje.

$$
H=\langle 4\rangle=\{\ldots,-8,-4,0,4,8, \ldots\}=\{4 k \mid k \in \mathbb{Z}\}
$$

(b) Sabirauje a grupi \mathbb{Z},e komutativuo. Pa kako re $G=(\mathbb{Z},+)$ Abelova grupa to, e, $\langle 4\rangle$ normalua podynapa. (U, ednom od prethoduih zadataka smo pokazali da je svaku podyrupa Abelove grupe normalua podyrupa)
(c) Posmatrajmo slídece cetri Llase

$$
\begin{aligned}
& 0+\langle 4\rangle=\{\ldots,-8,-4,0,4, e, \ldots\} \\
& 1+\langle 4\rangle=\{\ldots,-11,-7,-3,1,5,9, \ldots\} \\
& 2+\langle 4\rangle=\{\ldots,-10,-6,-2,2,6,10, \ldots\} \\
& 3+\langle 4\rangle=\{\ldots,-9,-5,-1,3,7,11, \ldots\}
\end{aligned}
$$

Trrdimo da nema vive klasa. Ako., e $k \in \mathbb{Z}$ tada je $k=4 g+r$, gdje, e $0 \leq r<4$; a time $k+\langle 4\rangle=r+4 q+\langle 4\rangle=$ $=r+\langle 4\rangle$. Prena tome

$$
\mathbb{Z} \mid\langle 4\rangle=\{0+\langle 4\rangle, 1+\langle 4\rangle, 2+\langle 4\rangle, 3+\langle 4\rangle\}
$$

d)

e) $|2+\langle 4\rangle|=2$ kao element grupe $\mathbb{Z} \mid\langle 4\rangle$.
(\#) Odrediti red elementa $2+\langle 5\rangle$ u grupi $\mathbb{Z} /\langle 5\rangle$.
R_{j}.

$$
\begin{aligned}
& \mathbb{Z}\langle\langle 5\rangle=\{0+\langle 5\rangle, 1+\langle 5\rangle, 2+\langle 5\rangle, 3+\langle 5\rangle, 4+\langle 5\rangle\} \\
& \text { Ot }\langle 5\rangle \text { er neutraln. }
\end{aligned}
$$

$0+\langle 5\rangle$ je nentialy; dement

$$
\begin{aligned}
& (2+\langle 5\rangle)+(2+\langle 5\rangle)=4+\langle 5\rangle \\
& (4+\langle 5\rangle)+(2+\langle 5\rangle)=1+\langle 5\rangle \\
& (1+\langle 5\rangle)+(2+\langle 5\rangle)=3+\langle 5\rangle \\
& (3+\langle 5\rangle)+(2+\langle 5\rangle)=0+\langle 5\rangle
\end{aligned}
$$

$|2+\langle 5\rangle|=5$ kao element prupe $\mathbb{Z} \mid\langle 5\rangle$.
(\#) Neka, e $H=\langle 6\rangle$ podgrupa grupe $G=\mathbb{Z}_{18}$.
(a) Napisati sue elemente grope $H=\langle 6\rangle$.
(b) Pokazati da je H normalna podympa grupe G.
(c) Napisuli wre elemente fakbouske grope $\mathbb{Z}_{1 p} /\langle 6\rangle$.
(d) Napisuti Cayley-eru tabelu zo $\mathbb{Z}_{18} \ll 6>$.
(e) Odrediti redove elemerata $2+\langle 6\rangle, 3+\langle 6\rangle ; 5+\langle 6\rangle$.
R_{j}.

$$
\mathbb{Z}_{18}=\{0,1,2,3,4, \ldots, 15,16,17\}
$$

(a)

$$
H=\langle 6\rangle=\{0,6,12\}
$$

(b) Ujednom od prethoduih zadataka smo pokazali da je svaka podgrupa Abelove grupe normalua podgrupa,
Kako, e $\left(\mathbb{Z}_{18},+\right)$ Abelova grupa. to, ee <6> nomalua podgrupo grupe \mathbb{Z}_{18}.
(npr. $\left.\forall a \in \mathbb{Z}_{18} \quad a+\langle 6\rangle+(-a)=\{a+0+(-a), a+6+(-a), a+12+(-a)\}=H\right)$
(c) Za proizuol,an $k \in \mathbb{Z}_{18} \quad k=6 g+r \quad z_{a}$ neki $g \in\{0,1,2\} ; i \leq r<6$, a time $k+\angle 6\rangle=r+6 q+\langle 6\rangle=r+\langle 6\rangle$

$$
\begin{aligned}
\mathbb{Z}_{18} /\langle 6\rangle= & \begin{cases}0+\langle 6\rangle, & 1+\langle 6\rangle, \\
& 2+\langle 6\rangle, \quad 3+\langle 6\rangle,\end{cases}
\end{aligned}
$$

(d)

(e)

$$
\begin{aligned}
& \mid 2+\langle 6>|=3 \\
& \mid 3+<6>1=2 \\
& \mid 5+<6>1=6
\end{aligned}
$$

(\#) Neka, e $\not K=\left\{R_{0}, R_{180}\right\}$ podyrupa dihedralue grupe D_{4}. Napisati Cayleyevu tabelu za D_{4} / K. (Po potreb;
 od prethodnih zadatakal.
R_{j}.

$$
\begin{aligned}
& \mathcal{K}=\left\{R_{g} R_{180}\right\} \\
& \quad D_{4} / \mathbb{K}=\left\{K, R_{s o} \mathbb{K}, H \mathcal{H}, D \mathbb{K}\right\}
\end{aligned}
$$

Cayley eva bubela

	K	$R_{s 0} K$	$H K$	$D K$
K	\mathcal{K}	$R_{50} K$	$H K$	$D K$
$R_{0} K$				
$H K$				
$R_{50} K$	K	$D K$	$H K$	
$H K$	$D K$	$D K$	K	$R_{50} K$
$D K$	$H K$	$R_{50} K$	K	

Primpetiun da iato je $R_{\infty 0} H=D^{\prime}$, a tabelie vmo kovistil; $D K$ za RoJHIK zato rto, e $D^{\prime} K=D K$).
$D_{4} /$ IK nam daje dobru moguinart da pokażemo na koji naïin je fakhorsky grupa grupe G povezana sa suunom grupom $G_{\text {. Pretportarimo de }}$ vmo zaglavljer kolona Cayleyere tablie grape D_{4} napisuli nu takar nain da su klase od TV u surjètuin kolonama (vidi sljetein tabelu). Tada se multiplitutima tabela za Du moz̈e particionisah.
kvadratice koji predrtarlaju klase od K, ; zamièna koja men-a kvadratić koji sudräti element x sa klasom $x \mathscr{K}$ daje Cayley-eru tabelu zor $D_{n}>\mathbb{R}$.
Na primper, kadu prelazimo sa Cayleyae tabele prape D_{4}, u Cayleyeur babelu grope D_{4} / \mathcal{K}, kuadrat $\left[\begin{array}{cc}H & V \\ V & H\end{array}\right]$
parbege elenent HK. Sliino, kvadrat $\begin{array}{lc}D & D^{\prime} \\ D & D\end{array}$
portage element DYK i tako dalie.

	R_{0}	R_{180}	R_{90}	R_{270}	H	V	D	D^{\prime}	
R_{0}	R_{0}	R_{130}	$R_{\rho 0}$	R_{270}	H	V	D	D^{\prime}	
R_{180}	R_{180}	R_{0}	R_{270}	R_{90}	V	H	D^{\prime}	D	
	R_{90}	$R_{\rho 0}$	R_{270}	R_{180}	R_{0}	D^{\prime}	D	H	V
R_{270}	R_{270}	$R_{\rho 0}$	R_{0}	R_{180}	D	D^{\prime}	V	H	

(\#) Neka, e $G=H \times K$, gdje su H ik date grope. Pokazati da je $H \times 1 \Delta G$, gdje je $1=\{1\}$ grupa lopa sedirii samo
R_{j} identitet.

$$
\begin{aligned}
& G=H \times K \\
& H \times 1 \triangleleft G \Leftrightarrow H \times 1 \triangleleft H \times K
\end{aligned}
$$

Z̈elimo pokurati da je $g(H \times 1) g^{-1} \subseteq H \times 1$ the $\forall g \in G$.
. Neka, e $(h, 1)$ proizudijui elenent if $H \times 1 \quad((b, 1) \in H \times 1)$. Tadu zer $\forall \rho \in G \quad\left(g=\left(g_{1}, g_{2}\right) \in H \times K\right)$ imano du jee $\rho^{-1}=\left(\rho_{1}^{-1}, \rho_{2}^{-1}\right)$
i

$$
g(h, 1) g^{-1}=\left(g_{1} h g_{1}^{-1}, g_{2} 1 g_{2}^{-1}\right)=(\underbrace{g_{1} h g_{1}^{-1}}_{\epsilon H}, 1) \in H \times 1
$$

Time sumo pokaruli du $\mu \quad g(H \times 1) g^{-1} \subseteq H \times 1 \quad \forall g \in G$ Prena tome $H \times 1 \triangleleft G$.
(\#) Pronaci redove datih faktorskih grupa:
(a) $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right) /(<2>x<2>)$;
(b) $\left(\mathbb{Z}_{12} \times \mathbb{Z}_{18}\right) /\langle(4,3)\rangle$.
R_{j}.
(a) $\langle 2\rangle \subseteq \mathbb{Z}_{4}$

$$
\begin{aligned}
\langle 2\rangle=\{0,2\} \Rightarrow & \langle 2\rangle \times\langle 2\rangle=\{(0,0),(0,2),(2,0),(2,2)\} \\
& |\langle 2\rangle \times\langle 2\rangle|=4
\end{aligned}
$$

$$
\left|\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right|=16
$$

Red faktorske grupe $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right) /(\langle 2\rangle \times\langle 2\rangle)$ je $\frac{16}{4}=4$
(b)

$$
\langle(4,3)\rangle \subseteq \mathbb{Z}_{12^{\times}} \mathbb{Z}_{18}
$$

$$
(4,3)+(4,3)=(8,6) \quad(4,12)+(4,3)=(8,15)
$$

$$
\begin{aligned}
& (8,6)+(4,3)=(0,9) \\
& (0,9)+(4,3)=(4,12)
\end{aligned} \quad(8,15)+(4,3)=(0,0) \quad \Rightarrow \quad|(4,3)|=6
$$

$$
(0,9)+(4,3)=(4,12)
$$

$$
|\langle(4,3)\rangle|=6
$$

Red faktorske prupe $\left(\mathbb{Z}_{12} \times \mathbb{Z}_{18}\right) /\langle(4,3)\rangle$,e $\frac{12 \cdot 18}{6}=2 \cdot 18=36$.
7. Let $K=\langle 15\rangle$ be the subgroup of $G=\mathbb{Z}$ generated by 15 .
(a) List the elements of $K=\langle 15\rangle$.

Answer: $K=\langle 15\rangle=\{15 k \mid k \in \mathbb{Z}\}$
(b) Prove that K is normal subgroup of G.

Proof: $(\mathbb{Z}+)$ is Abelian group and any subgroup of an Abelian group is normal (from 5).
(c) List the elements of the factor group $G / K=\mathbb{Z} /\langle 15\rangle$.

Answer: $G / K=\mathbb{Z} /\langle 15\rangle=\{i+\langle 15\rangle \mid 0 \leq i \leq 14\}$. (There are 15 elements.)
!!! This is just one way of expressing these cosets. Notice that there are many ways of expressing the same coset, eg. $(2+\langle 15\rangle)=(17+\langle 15\rangle)=(32+\langle 15\rangle)=(-13+\langle 15\rangle)=\ldots$.
(d) Write the Cayley table of $G / K=\mathbb{Z} /\langle 15\rangle$.

Answer: Don't have to actually write it, but make sure that you know what it would look like.
(e) What is the order of $3+K=3+\langle 15\rangle$ in $\mathbb{Z} /\langle 15\rangle$?

Answer: $|3+\langle 15\rangle|=5$ in $\mathbb{Z} /\langle 15\rangle$, since
$(3+\langle 15\rangle)+(3+\langle 15\rangle)+(3+\langle 15\rangle)+(3+\langle 15\rangle)+(3+\langle 15\rangle)=(15+\langle 15\rangle)=(0+\langle 15\rangle)$.
(f) What is the order of $4+K=4+\langle 15\rangle$ in $\mathbb{Z} /\langle 15\rangle$?

Answer: $|4+\langle 15\rangle|=15$ in $\mathbb{Z} /\langle 15\rangle$.
(g) What is the order of $5+K=5+\langle 15\rangle$ in $\mathbb{Z} /\langle 15\rangle$?

Answer: $|5+\langle 15\rangle|=3$ in $\mathbb{Z} /\langle 15\rangle$.
(h) What is the order of $6+K=6+\langle 15\rangle$ in $\mathbb{Z} /\langle 15\rangle$?

Answer: $|6+\langle 15\rangle|=5$ in $\mathbb{Z} /\langle 15\rangle$,
(i) Prove that G / K is cyclic.

Answer: $\mathbb{Z} /\langle 15\rangle$ is generated by $1+\langle 15\rangle$, hence it is cyclic.
underlineAnswer 2: $\mathbb{Z} /\langle 15\rangle$ is cyclic since it is factor of the cyclic group $(\mathbb{Z},+$) (this group is generated by 1).
(j) Prove that $G / K=\mathbb{Z} /\langle 15\rangle$ is isomorphic to \mathbb{Z}_{15}.

Answer:

- One way - using the First Isomorphism Theorem:
- Define a group homomorphism: $f: \mathbb{Z} \rightarrow \mathbb{Z}_{15}$:
* Since \mathbb{Z} is cyclic it is enough to define homomorphism on a generator, and extend to all other elements.
* Define $f(1):=1(\bmod 15)$ and $f(n 1):=n 1(\bmod 15)($ i.e. $f(n):=n(\bmod 15)$
* Since $|1|=\infty$ for $1 \in \mathbb{Z}$ and $|f(1)|=15$ for $f(1)=1 \in \mathbb{Z} /\langle 15\rangle$ we have $|f(1)|||1|$.
- Claim 1: f is onto (this is quite clear, but here is a detailed proof).
* Elements of \mathbb{Z}_{15} are integers $\{0,1,2, \ldots, 14\}$
* For each $n \in\{0,1,2, \ldots, 14\}=\mathbb{Z}_{15}$ consider $n \in \mathbb{Z}$.
* Then $f(n)=n \in \mathbb{Z}_{15}$. Hence f is onto.
$-\operatorname{Im}(f)=\mathbb{Z}_{15}$ (As stated in class this is equivalent to f being onto.)
- Claim 2: $\operatorname{Ker}(f)=\langle 15\rangle<\mathbb{Z}$ (this is quite clear, but here is a detailed proof).
* $\operatorname{Ker}(f)=\left\{n \in \mathbb{Z} \mid f(n)=0 \in \mathbb{Z}_{15}\right\}$
* $n(\bmod 15)=r \in\{0,1, \ldots, 14\}$, where r is the remainder after dividing n by 15 , i.e. $n=15 k+r$, for some integer k.
* If $n \in \operatorname{Ker}(f)$ then $f(n)=0$ and therefore $n=15 k \in\langle 15\rangle<\mathbb{Z}$.
* Therefore $\operatorname{Ker}(f) \subset\langle 15\rangle$.
* $\langle 15\rangle \subset \operatorname{Ker}(f)$ is clear since $x \in\langle 15\rangle$ implies $x=15 k$ for some integer k and therefore $f(x)=f(15 k)=15 k(\bmod 15)=0 i n \mathbb{Z}_{15}$.
- First Isomorphism Theorem states: If $f: G \rightarrow G^{\prime}$ is a group homomorphism then $G / \operatorname{Ker}(f) \cong \operatorname{Im}(f)$.
$-\mathbb{Z} /\langle 15\rangle \cong \mathbb{Z}_{15}$
- Another way, by defining isomorphism and checking all details of being isomorphism:
- Elements of $\mathbb{Z} /\langle 15\rangle$ are left cosets, and operation is addition of cosets (as defined for factor groups!)
- Elements of $\mathbb{Z}_{15}:\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14\}$ and addition is modulo 15.
- Define the map: $f: \mathbb{Z} /\langle 15\rangle \rightarrow \mathbb{Z}_{15}$ by $f(i+\langle 15\rangle)=r_{i}$, where r_{i} is the remainder after dividing i by 15 .
* Notice that f, as defined, is a mapping from $\mathbb{Z} /\langle 15\rangle$ to \mathbb{Z}_{15} since the values of f are the remainders after dividing by 15 , hence they are non-negative integers between 0 and 14.
* Prove that f is well-defined:

Suppose the same coset $(i+\langle 15\rangle)$ is given by another integer j, i.e. $(i+\langle 15\rangle)=(j+\langle 15\rangle)$.
Then $f(i+\langle 15\rangle)=r_{i} \in \mathbb{Z}_{15}$ and $f(j+\langle 15\rangle)=r_{j} \in \mathbb{Z}_{15}$.
To show that f is well defined we must show that $f(i+\langle 15\rangle)=f(j+\langle 15\rangle)$, i.e. WTS $r_{i}=r_{j} \in \mathbb{Z}_{15}$.

From $(i+\langle 15\rangle)=(j+\langle 15\rangle)$ it follows that $j \in(i+\langle 15\rangle)$ and therefore $j=i+k 15$ for some integer $k \in \mathbb{Z}$.
By definition of remainders: $i=n \cdot 15+r_{i}$ and $j=m \cdot 15+r_{j}$, with $0 \leq$ $r_{i}, r_{j}<15$.
Therefore from $j=i+k 15$, we have $m \cdot 15+r_{j}=n \cdot 15+r_{i}+k 15$. Hence $r_{j}-r_{i}=(k+n-m) \cdot 15$ which is an integer multiple of 15 . Since the remainders are $0 \leq r_{i}, r_{j}<15$, it follows that $r_{j}=r_{i}$.
Therefore f is a well defined function.

* Let $f: \mathbb{Z} /\langle 15\rangle \rightarrow \mathbb{Z}_{15}$ defined by $f(i+\langle 15\rangle)=r_{i}$, where r_{i} is the remainder after dividing i by 15 . Then f is "one-to-one" function.
Proof: Suppose there are $a, b \in \mathbb{Z} /\langle 15\rangle$ such that $f(a)=f(b)$. WTS $a=b$.
From $a, b \in \mathbb{Z} /\langle 15\rangle$, it follows that $a=i+\langle 15\rangle$ and $b=j+\langle 15\rangle$.
From $f(a)=f(b)$ it follows $f(i+\langle 15\rangle)=f(j+\langle 15\rangle)$, and by definition of f it follows that $r_{i}=r_{j}$.
So $i=n \cdot 15+r_{i}$ and $j=m \cdot 15+r_{j}$. Therefore $i-j$ is a multiple of 15 , hence and element of the subgroup $\langle 15\rangle$.
Therefore $a=i+\langle 15\rangle=j+\langle 15\rangle=b$.
Therefore f is a one-to-one function.
* $f: \mathbb{Z} /\langle 15\rangle \rightarrow \mathbb{Z}_{15}$ is onto.

Proof: Let $y \in \mathbb{Z}_{15}$. WTS: there is an $x \in \mathbb{Z} /\langle 15\rangle$ such that $f(x)=y$.
Since $y \in \mathbb{Z}_{15}, y$ is an integer $0 \leq y<15$.
Let $x=y+\langle 15\rangle \in \mathbb{Z} /\langle 15\rangle$.
Then $f(x)=f(y+\langle 15\rangle)=r_{y}$. Since $0 \leq y<15$, it follows that $r_{y}=y$.
Therefore $f(x)=y$.
Therefore f is onto.

* $f(a+b)=f(a)+f(b)$

Proof: Let $a, b \in \mathbb{Z} /\langle 15\rangle$.
From $a, b \in \mathbb{Z} /\langle 15\rangle$, it follows that $a=i+\langle 15\rangle$ and $b=j+\langle 15\rangle$.
Then it follows that $a+b=(i+\langle 15\rangle)+(j+\langle 15\rangle)=(i+j)+\langle 15\rangle$
$f(a+b)=(i+j)(\bmod 15)$
$f(a)+f(b)=i(\bmod 15)+j(\bmod 15)=(i+j)(\bmod 15)$
Therefore $f(a+b)=f(a)+f(b)$

- Therefore $f: \mathbb{Z} /\langle 15\rangle \rightarrow \mathbb{Z}_{15}$ is an isomorphism.

8. Let $G=\langle 6\rangle$ and $H=\langle 24\rangle$ be subgroups of \mathbb{Z}. Show that H is a normal subgroup of G. Write the cosets of H in G. Write the Cayley table for G / H.

Answer: G and H are subgroups of \mathbb{Z}, hence operation is addition.
$G=\langle 6\rangle=\{0, \pm 6, \pm 12, \pm 18, \pm 24, \pm 30, \pm 36, \pm 42, \pm 48, \ldots\}=\{6 j \mid j \in \mathbb{Z}\}$, multiples of 6 .
$H=\langle 24\rangle=\{0, \pm 24, \pm 48, \ldots\}=\{24 j \mid j \in \mathbb{Z}\}$, i.e. all integer multiples of 24 .

- H is a normal subgroup of G.
- H is a nonempty subset of G, since elements of H are elements of G (integer multiples of 24 are multiples of 6).
- H is closed under operation: If $a, b \in H$, then $a=24 m$, and $b=24 n$. Therefore $a+b=24 m+24 n=24(m+n) \in H$.
$-H$ is closed under inverses: If $a \in H$, then $a=24 m$. Therefore $-a=24 \cdot(-m)$, hence $-a \in H$.
- Since \mathbb{Z} is abelian, G is also abelian and therefore any subgroup of G is normal. Hence H is normal in G.
- Cosets of $H=\langle 24\rangle$ in $G=\langle 6\rangle$ are:

$$
\begin{aligned}
& H=0+H=0+\langle 24\rangle=\{\ldots,-48,-24,0,24,48, \ldots\}, \\
& 6+H=6+\langle 24\rangle=\{\ldots,-42,-18,6,30,54, \ldots\} \\
& 12+H=12+\langle 24\rangle=\{\ldots,-36,-12,12,36,60, \ldots\}, \\
& 18+H=18+\langle 24\rangle=\{\ldots,-30,-6,18,42,66, \ldots\} .
\end{aligned}
$$

- Elements of G / H are the four cosets written above and the Cayley table is:

$G / H=\langle 6\rangle /\langle 24\rangle$	$0+\langle 24\rangle$	$6+\langle 24\rangle$	$12+\langle 24\rangle$	$18+\langle 24\rangle$
$0+\langle 24\rangle$	$0+\langle 24\rangle$	$6+\langle 24\rangle$	$12+\langle 24\rangle$	$18+\langle 24\rangle$
$6+\langle 24\rangle$	$6+\langle 24\rangle$	$12+\langle 24\rangle$	$18+\langle 24\rangle$	$0+\langle 24\rangle$
$12+\langle 24\rangle$	$12+\langle 24\rangle$	$18+\langle 24\rangle$	$0+\langle 24\rangle$	$6+\langle 24\rangle$
$18+\langle 24\rangle$	$18+\langle 24\rangle$	$0+\langle 24\rangle$	$6+\langle 24\rangle$	$12+\langle 24\rangle$

9. Viewing $\langle 6\rangle$ and $\langle 24\rangle$ as subgroups of \mathbb{Z}, prove that $\langle 6\rangle /\langle 24\rangle$ is isomorphic to \mathbb{Z}_{4}.

Proof: Elements of $\langle 6\rangle /\langle 24\rangle$ are the 4 cosets: $\{(0+\langle 24\rangle),(6+\langle 24\rangle),(12+\langle 24\rangle),(18+\langle 24\rangle)\}$ with the above multiplication table.
$|6+\langle 24\rangle|=4$ since $(6+\langle 24\rangle)+(6+\langle 24\rangle)+(6+\langle 24\rangle)+(6+\langle 24\rangle)=(0+\langle 24\rangle)$.
So $\langle 6\rangle /\langle 24\rangle$ can be generated by one element of order 4 , therefore it is cyclic of order 4 .
The group \mathbb{Z}_{4} is also cyclic of order 4. By theorem: "Any two cyclic groups of the same order are isomorphic.", it follows that $\langle 6\rangle /\langle 24\rangle$ is isomorphic to \mathbb{Z}_{4}.

10 . Let $\langle 8\rangle$ be the subgroup of \mathbb{Z}_{48}.
(a) What is the order of the factor group $\mathbb{Z}_{48} /\langle 8\rangle$?

Answer: Elements of \mathbb{Z}_{48} are $\{0,1,2,3, \ldots 46,47\}$ and $\left|\mathbb{Z}_{48}\right|=48$.
Elements of $\langle 8\rangle \subset \mathbb{Z}_{48}$ are $\{0,8,16,24,32,40\}$ and $|\langle 8\rangle|=6$.
Therefore the order of the factor group is: $\left|\mathbb{Z}_{48} /\langle 8\rangle\right|=\left|\mathbb{Z}_{48}\right| /|\langle 8\rangle|=48 / 6=8$.
(b) What is the order of $2+\langle 8\rangle$ in the factor group $\mathbb{Z}_{48} /\langle 8\rangle$?

Answer: Elements of $\mathbb{Z}_{48} /\langle 8\rangle$ are the following cosets:
$\{(0+\langle 8\rangle),(1+\langle 8\rangle),(2+\langle 8\rangle),(3+\langle 8\rangle),(4+\langle 8\rangle),(5+\langle 8\rangle),(6+\langle 8\rangle),(7+\langle 8\rangle)\}$.
The order of $(2+\langle 8\rangle)$ is $\mid(2+\langle 8\rangle \mid=4$ since 4 is the smallest number of times $(2+\langle 8\rangle)$ must be added to itself in order to get the identity, i.e. such that $(2+\langle 8\rangle)+(2+\langle 8\rangle)+$ $(2+\langle 8\rangle)+(2+\langle 8\rangle)=(0+\langle 8\rangle)$.
11. Let $G=U(16)$ be the group of units modulo 16 .
(a) What is the order of G ?

Answer: $G=\{1,3,5,7,9,11,13,15\}$. So $|G|=8$.
We also know that $|U(16)|=\phi(16)=\phi\left(2^{4}\right)=2^{3}(2-1)=8$.
(b) What is the order of $15 \in U(16)$?

Answer: $15 \cdot 15=225 \equiv 1(\bmod 16)$. Therefore $|15|=2$ in $U(16)$.
(Another way: $15 \cdot 15=(-1)(-1)=1 \equiv 1(\bmod 16)$)
(c) Let $H=<15>$ be the subgroup of $U(16)$ generated by 15 . What is the order of the factor group $U(16) / H$?
Answer: $|G|=8,|H|=2$. Therefore $|G / H|=|G| /|H|=8 / 2=4$
Also, in more details: $H=<15>=\{1,15\}$.
Elements of G / H are the left cosets of H in G :
$1 H=\{1,15\}=15 H$,
$3 H=\{3,13\}=13 H$
$5 H=\{5,11\}=11 H$
$7 H=\{7,9\}=9 H$
(d) Make the Cayley table of the factor group $U(16) / H$.

Answer:

G / H	$1 H$	$3 H$	$5 H$	$7 H$
1 H	$1 H$	$3 H$	$5 H$	$7 H$
3 H	$3 H$	$7 H$	$1 H$	$5 H$
5 H	$5 H$	$1 H$	$7 H$	$3 H$
7 H	$7 H$	$5 H$	$3 H$	$1 H$

(1) (a) What is the order of the element $3\langle 16\rangle$ within the group $U(35) /\langle 16\rangle$?

Solution. One can compute that $\langle 16\rangle=\{1,16,11\}$. We just need to compute powers of $3\langle 16\rangle=$ $\{3,13,33\}$ until we hit the identity element of $U(35) /\langle 16\rangle$ (the identity element being $\langle 16\rangle$ itself):

$$
\begin{aligned}
& (3\langle 16\rangle)^{1}=3\langle 16\rangle=\{3,13,33\} \neq\{1,16,11\} \\
& (3\langle 16\rangle)^{2}=(3\langle 16\rangle)(3\langle 16\rangle)=9\langle 16\rangle=\{9,4,29\} \neq\{1,16,11\} \\
& (3\langle 16\rangle)^{3}=(9\langle 16\rangle)(3\langle 16\rangle)=27\langle 16\rangle=\{27,12,17\} \neq\{1,16,11\} \\
& (3\langle 16\rangle)^{4}=(27\langle 16\rangle)(3\langle 16\rangle)=\{11,1,16\}
\end{aligned}
$$

Hence $|3\langle 16\rangle|=4$.
[Note: we've included more computations above than are necessary. We must find the smallest $k>0$ so that $(3\langle 16\rangle)^{k}=\langle 16\rangle$. Since $(3\langle 16\rangle)^{k}=3^{k}\langle 16\rangle$, this is equivalent to finding the smallest $k>0$ with $3^{k} \in\langle 16\rangle$. One then computes powers of 3 until an element from $\langle 16\rangle$ appears.]
(b) Suppose that G is a group and $H \triangleleft G$; suppose that $g \in G$ is given so that g has finite order. Prove that the order of $g H$ (as an element of G / H) is finite and divides the order of g (as an element of $G)$. [Note: we now have two meanings for "the order of $g H$;" one is in thinking of gH as a set of elements, and the other in thinking of gH as an element of the group G / H. In both parts of this problem, we're interested in the order of these cosets as elements in their respective factor groups.]
Solution. Let $n=|g|$. This means that $g^{n}=e$; in particular this gives $(g H)^{n}=g^{n} H=e H=H$. By the order divides lemma, we have $|g H|$ divides n. (In particular, $|g H|<\infty$.)

